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The Fourier integral of the Buerger minimum function is used for the calculation of the phases 
of the structure amplitudes. This method was applied to the crystal structure determination of 
bafertisite, BaFezTiO[SiEO7](OH)2, the synthetic silicate NazMnz[SizO7], and vinogradovite 
NazTi4[Si2Oo]2.[Si4Ol0]. 04. nH20. Some possible methods of automatic search for the displacement 
vectors necessary for the construction of the minimum function were examined. 

An effective method of interpreting the Patterson func- 
tion has been proposed by Wrinch (1939) and devel- 
oped by Butuzov (1949), Sanadze & Zhdanov (1950), 
Clastre & Gay (1950a, b), Garrido (1950), Beevers & 
Robertson (1950), Belov & Mokeyeva (1951), Kitay- 
gorodsky (1951, 1952), Vainstein (1952a, b; 1954) and 
others. Buerger (1959) has turned this method into a 
convenient tool for crystal structure determination. 
To locate the coincident peaks on superimposed 
Patterson maps (displaced relative to each other) 
Buerger has proposed special image-seeking functions, 
maxima of which correspond to the atomic positions 
in the structure. The most effective is the minimum 
function 

Mn(r )=min  { P ( r - r l ) ;  P ( r - r 2 ) ;  . . . P ( r - r n ) } .  (1) 

Even this function often has some additional (false) 
maxima which impede the analysis. 

There are two reasons for the appearance of false 
maxima. The first of these is that overlapping peaks on 
the Patterson map are always taken into considera- 
tion. The second reason is the existence of some geo- 
metrical relationships between the atomic coordinates 
in the structure. This results in the appearance of false 
maxima on the Buerger image-seeking functions even 
if the Patterson function has no overlapped peaks. 

The simplest example of such a relationship in a struc- 
ture is an arrangement of three atoms in a line when 
the distance between atoms h and p equals one half 
of that between p and m (Fig. 1). This relationship can 
be described by the expression 3 rp=2rn+rm and re- 
sults in the appearance of false peaks on the image- 
seeking functions if rnp and rmp are used as the dis- 
placement vectors. The appearance of false peaks is 
conditioned by the following general relationship be- 
tween the atomic coordinates of the nonsymmetric 
part of the structure" 

rp + rn + rk = rm + rz + rh (2) 

This relationship gives the possibility of getting 9 
differences between the vectors on either side of the 
equation. The use of any of these differences results in 
the appearance of two centrosymmetric pairs of false 
peaks. If one uses + ½(rp- rD as the displacement vec- 
tor, the false peaks will occur at the points 
_ + [ r t - r k - ½ ( r p - r D ]  and + [ r z - r n - ½ ( r p - r ~ ) ] .  Hence 
the following condition holds" a false peak will appear 
on the image-seeking functions if a displacement vec- 
tor equals the difference between two arbitrary Patter- 
son vectors which take no part in the building up of the 
image of the structure. Strictly speaking one should 
take into consideration the periodicity of the struc- 
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Fig. 1. The simplest case of the appearance of false peaks in the image-seeking function. S, structure consisting of three atoms. 
P, Patterson function. M~j, seeking function; i , j  indicate the displacement vector. ®, false peaks. 
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ture and write, instead of (2): 

rn~ = rkz - rmn  + R~pv (3) 

where r~ j=D-r~ ,  R,p~=~ea+fleb+yec,  ei are the unit 
vectors of the crystallographic axes, and e, f l y  are 
integers. It should be stressed that if (3) holds, the false 
peaks on the image-seeking functions will appear even 
if no peaks overlap in the Patterson map. 

To detect false maxima one can calculate the image- 
seeking function of higher rank using, for example, 
the crystal symmetry and some additional crystal 
chemistry data. Another way enables one to construct 
automatically the first approximation of the electron 
density distribution in the crystal from the image- 
seeking function. These functions are used to calculate 
phases of structure amplitudes (Simonov & Vainstein, 
1959 ; Simonov, 1961,1965a). Under these circumstances 
there is no necessity to identify peaks of the image- 
seeking function with the atoms of the structure. 
Image-seeking functions give an approximation to the 
electron density distribution Q(r). Therefore the Fourier 
integral of such a function gives a corresponding ap- 
proximation to the Fourier-coefficients of the electron 
distribution: 

ffri = q l  Mn(r) exp [2rciHr]dv (4) 
,) 

The phases of Fn were assigned to the IFobsl to obtain 
the first approximation of the electron density distribu- 
tion. This approximation will be called a superposi- 
tional synthesis. The effectivness of this method of 
obtaining the phases of the structure amplitudes 
(using the Fourier integral of the Buerger minimum 
function) has been demonstrated by some crystal 
structure determinations. 

Such a calculation of the relative phases of the struc- 
ture amplitudes allows one to take into consideration 
the positions of all the peaks appearing on Mn(r) with- 
out using any a priori structure models. The influence 
of the false peaks of Mn(r) on ~(r) is partly eliminated 
by the fact that 0(r) is calculated using IFobsl'S. It is 
well known that taking full account of symmetry 
allows the rank of Mn(r) to be raised and thus enables 
an additional refinement of the function to be made 
which reduces the false peaks. The described method of 
obtaining phases enables one to take into considera- 
tion the symmetry of a structure in reciprocal space 
through the values of fin, rather than through the 
symmetry in real space of the Mn(r) function. Consider 
a centrosymmetric orthorhombic crystal. Using the 
vector between atoms connected by an inversion centre 
one can construct the function Me(r). The independent 
part of this function is defined in one half of the unit 
cell. Then the Fourier integral gives different values for 
Fhk l, Fhkl, Fhkl, and Fhk 7. As the symmetry of a space 
group results in a definite relationship between Fhk t, 
F~k 1, Fhr, t, and Fhk7 one can obtain the most probable 
signs of the structure amplitudes by use of the above 
mentioned relationship and [ffnl values. 

Before using Mn(r) to obtain the phases it seems use- 
ful to modify this function in such a way as to make 
it closer to the Q(r) distribution. If the M2(r) function 
is constructed on the base of a centrosymmetrical vec- 
tor one can modify it by the addition of the sum 
X fz  o cos 2rcHr0 x exp [ -  2rciHr] which doubles the 
H 

value of the centrosymmetrical peak and makes its 
weight equal to the weights of all the other structural 
peaks (Simonov, 1961). Rao (1967) has proposed 
taking Mn( r )=0  at all points where Mn(r)<0.  This 
cuts off the negative background of the function 
making it closer to the 0(r) and so gives an improve- 
ment in the set of phases obtained with the help of 
Mn(r). 

The programs for the calculation of the phases of 
the structure amplitudes were worked out at the Com- 
puter Centre of the Moscow State University (Simonov 
& Shchedrin, 1961; Shchedrin, Tovbis & Simonov, 
1966). Utilizing these programs some structure deter- 
minations were carried out with the help of the above 
mentioned method. The method was first applied 
to the structure determination of bafertesite 
BaFe2TiO [Si207] (OH)z. The structure was solved 
with the help of two-dimensional projections (Simonov, 
1965a). In this case the presence of the very heavy Ba 
atoms was so helpful that the full power of the method 
was not demonstrated. The second successful struc- 
ture determination by this method was carried out on 
the synthetic silicate NazMn2[Si207] (a=8.757, b =  
13-294, c = 5 . 7 4 4 A ;  f l=90°10 ' ;  P2~/n; Z=4) .  In this 
structure there are two crystallographically inde- 
pendent Mn atoms. Their positions were determined 
from the three-dimensional Patterson function. The 
centrosymmetrical peaks M n - M n  were used to obtain 
two functions M2(r). Fourier integrals of these func- 
tions allowed one to obtain two approximate electron 
density distributions ~o~(r) and ~oz(r). In the calculation 
of these superpositional syntheses we considered only 
the centre of symmetry from all the symmetry elements 
of the space group P2~/n. The next step was to obtain 
o( r )=min  {01(r); 02(r)} and lastly the final 0(r) mini- 
mum-function map was found by means of the com- 
parison of Q(r) with itself according to the symmetry 
of the group P21/n. Sections of the final three-dimen- 
sional superpositional synthesis are shown in Fig. 2. 
Basic atomic positions were obtained by the least- 
squares method. The synthesis in Fig. 2 enabled the 
positions of all the atoms of the structure to be found 
except those of the oxygen 0(4). The relative weights of 
the peaks are satisfactory and false peaks are virtually 
absent. 

Vinogradovite, Na4Ti4[Si20612. [5i4010]. 04. nH20 
(a=5.218, b=8.692, c=24.605; f l=99°50' ;  A2/a;  
Z = 2), was the next structure solved by means of three- 
dimensional superpositional syntheses. As only 20% 
of the electrons are associated with Ti atoms in this 
structure it was not practical to use Ti as a heavy 
atom. Still, the analysis of the three-dimensional 
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Patterson distribution allowed the location of the 
Ti atom which occupies a general position in the unit 
cell. The centrosymmetrical vector Ti-Ti was used as 
the base for getting M2(r). The three-dimensional set of 
structure amplitudes was calculated using the Fourier 
integral of M2(r). Taking into account the previously 
determined signs the superpositional synthesis was cal- 
culated and refined, taking into account the symmetry 
elements of the group A2/a. The final superpositional 
synthesis appeared so convincing that we were able to 
correct the tentative chemical formula of the mineral 
proposed by Semenov, Bomschtedt-Kupletskaya, Mo- 
leva & Sludskaya (1956) to NasTi4A1Si6024.3H20. 
The superpositional synthesis of vinogradovite and 
atomic positions after least-squares refinement are 
shown in Fig. 3. 

The above mentioned structure investigations have 
shown the expediency of using the Fourier integral of 
the minimum-function to calculate the phases of struc- 
ture amplitudes. One should consider the possibility 
of applying this method to structures without a centre 
of symmetry. It is sufficient to obtain Mn(r) which is 
an approximation to the asymmetrical distribution of 
electron density. Then using the Fourier integral one 
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Fig.2. The set of sections of the three dimensional superpo- 
sition synthesis of Na2Mn2[Si2OT]. x the basic atomic posi- 
tion after the least-squares refinement. 

c/2  

( . . . . . . .  i / 
( 7~O (2) Na O(5)  _ / 

Na4Ti4 [Si2 06 ] 2 [Si4 O10 ] O4nH20  

Fig. 3. The set of sections of the three dimensional superposi- 
tion synthesis of vinogradovite, x the basic atomic positions 
after the least-squares refinement. 

can get the real and imaginary parts of the structure 
amplitudes. Thus, as soon as one finds the displace- 
ment vectors which separate the structure from the 
Patterson distribution, and hence obtain Mn(r), it 
becomes possible to get the superpositional synthesis 
which gives a better approximation to the electron 
density distribution in a crystal than does the Mn(r) 
function. 

The most important decision in the use of the super- 
position methods is the choice of vectors for obtaining 
the image-seeking function. In centrosymmetric cases 
it is desirable to displace Patterson maps by the vec- 
tors between atoms connected by an inversion centre. 
Even then the symmetric Patterson peaks have weights 
half as big as peaks due to similar atoms not involved 
in the displacement vector. In practice one often en- 
counters difficulties in locating single centrosymmetric 
maxima which are indistinguishable in the general 
Patterson background, even for structures of moderate 
complexity. There are some approaches to get over 
this difficulty and to derive an algorithm for seeking 
displacement vectors. We shall consider three of them. 

1. M. Gelfand has proposed an original method of 
seeking the global minimum of a function of many 
variables. Based on this method Vainstein, Gelfand, 
Kayushina & Fedorov (1963) and Gelfand, Vul, Ginz- 
burg & Fedorov (1966) worked out an algorithm for the 
determination of molecular crystal structures. The 
structure search is carried out by minimization of func- 
tional S=R+czD where R =  X [Irobsl--Ifea, cl[ and D 

H 

is the function of permissible distances. D_~ O if inter- 
molecular contacts are satisfactory, and 0¢ is a norma- 
lizing coefficient. Being formulated in such a way the 
problem is solved in a space whose dimension equals 
the number of generalized parameters which describe 
the sUucture. The minimization of R can be used in 
searching for displacement vectors which are necessary 
for the Mn(r) calculation. Here the IF[ values obtained 
according to (4) will play the part of [Feale[. To cal- 
culate M3(r) it is quite sufficient to locate two displace- 
ment vectors. To do this one has to solve the problem 
of minimizing R in six-dimensional space. The princi- 
ple of maximum superposition (Sarma & Srinivasan, 
1962) can be taken as the basis of the second approach 
to the working out of the algorithm for the displace- 
ment-vectors search. For non-centrosymmetric struc- 
tures, and in cases where the presence of the inversion 
centre is in question, the procedure of automatic 
seeking of displacement vectors consists of the fol- 
lowing stages: 

(1) Selection of two arbitrary peaks on the Patterson 
diagram, peaks in general positions being prefered. 

(2) Construction of two Mz(r) functions using these 
peaks. If the multiplicity of the chosen peaks is n, and 
//2 then on IMz(r ) and 2Mz(r ) there will separate nl and 
//2 displaced structure images and the same quantity of 
inverted images. 
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(3) lM2(r) and 2Me(r) are superimposed, being paral- 
lel to each other. The function M (r) is calculated, the 
vector t which determines the parallel displacement of 
1M2(r ) and 2M2(r ) being the parameter for the calcula- 
tion of 

tM4(r)=min {1M2(rW~-t); 2M2(r-½t)}. (5) 

The sought value of t, equal to to, is obtained from 

the condition" I ,o=max f tM4(r)dv" The meaning of 

this condition is simple: I t increases when a large 
number of peaks coincide on ~Mz(r + ½t) and ZM2(r + ½t) 
i.e. one or several structure images superimpose. If on 
t0M4(r) the number of peaks is much larger than the 
number of the atoms which have to be located, then 
this indicates that there is probably more than one 
image in the function. Then an additional cycle of the 
search for maximum superposition is needed but this 
time one must use M4(r) function copies. The greater 
the multiplicity of the first chosen Patterson peaks, the 
more cycles of the maximum-superposition search may 
be needed. If the presence of an inversion centre was 
known then there is no need to use two independent 
functions M2(r) for the maximum-superposition 
search. It is sufficient to construct MAr) by one arbi- 
trary Patterson vector and to seek maximum superpo- 
sition when displacing two copies of the same func- 
tion (Simonov, 1965b). 

One more approach to the solution of finding dis- 
placement wctors  for superposition was made by 
Germain & "~oolLon (1966). "l-he authors constructed 
M2(r) by an arbitrary Patterson vector. Depending on 
the multiplicity of the peak used several structure 
images, displaced relative to each other, will be present 
in the function. Now one can take the Fourier coeffi- 
cients for M2(r) according to (4), raise them to the 
second power and calculate a new Patterson function 
using [FH[ 2. In this new Patterson function the most 
powerful peaks will correspond to the vectors con- 
necting different displaced structure images on M2(r). 

The characteribtic feature of the algorithms under 
consideration is that they allow one to carry out 
automatically (on a computer) the whole of the pro- 
cesses making up the superposition method of crystal 
structure analysis. This would consist of five successive 
stages: 1. Construction of the Patterson function. 2. 
Automatic seeking of the displacement vectors. 3. The 
construction of the image-seeking function Mn(r). 4. 

Fourier transformation of Mn(r) thus obtaining the 
phases of structure amplitudes. 5. Calculation of a 
first approximation to the electron density distribu- 
tion. 

I am much obliged to Professor N. V. Belov, my 
teacher and a strict judge of my works, who drew my 
attention to superposition methods. The working out 
of the basic algorithms and its computer realization 
would have been impossible without the personal con- 
tact and cooperation of B. M. Shchedrin and A. B. 
Tovbis to whom I should like to express my gratitude. 
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